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Wolfgang Mulzer

1 Properties of Shortest Paths

We are given a simple polygon P , and two points s and t inside P . Let V (P ) be the vertex
set of P , and E(P ) the edge set. We assume that no three points from V (P ) ∪ {s, t} are on
a line. We would like to find a shortest path from s to t that lies inside P , i.e., a shortest
polygonal chain π with endpoints s and t such that π ⊆ P . Let V (π) denote the vertices
and E(π) the edges of π. Every vertex in V (π) \ {s, t} is called an inner vertex of π.

Lemma 1.1. There is a shortest path π from s to t so that all inner vertices of π are vertices
of P .

Proof. Let π be a shortest path from s to t with a minimum number of inner vertices not in
V (P ). If no such vertices exist, we are done. Thus, suppose there is v ∈ V (π)\(V (P )∪{s, t}),
and let e1, e2 ∈ E(π) be the two edges of π incident on v. If e1 and e2 are collinear, then v
can be deleted from π, contradicting the fact that the number of inner vertices is minimum.

Suppose that v is in the interior of an edge f ∈ E(P ). There is an ε > 0 such that the ε-ball
B = B(v, ε) around v intersects only v, e1, e2, and the interior of f . Let w1 and w2 be the
intersections of ∂B with e1 and e2. Since B intersects the polygon boundary only in f , the
line segment w1w2 lies in P . Also, since e1 and e2 are not collinear, the segment w1w2 is
strictly shorter than the chain w1vw2. Thus, replacing w1vw2 by the segment w1w2 yields a
strictly shorter path from s to t, a contradiction to π being a shortest path; see Fig. 1.

The case that v lies in the interior of P is analogous.
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Fig. 1: If v lies in the interior of f , we can shortcut π along w1w2.
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Fig. 2: The inner angle α of π at v: (a) v is not reflex; (b) v is reflex; (c) if v is not reflex,
we can shortcut π at w1w2.

e1
e2

e2

e1

e1

e2

e1

e2

(a) (b) (c) (d)

Fig. 3: (a) and (b): segments e1 and e2 intersect properly; (c) and (d): segments e1 and e2
do not intersect properly.

Now let π be a shortest path from s to t with all inner vertices in V (P ). Let e1, e2 ∈ E(π)
be the edges of π incident on v ∈ V (P ). The inner angle of π at v is the angle between e1
and e2 at v that lies wholly in P . We say that v is a reflex vertex of π if the inner angle is
at least 180◦, see Fig. 2(a,b).

Lemma 1.2. Let π be a shortest path from s to t with all inner vertices in V (P ). All inner
vertices of π are reflex.

Proof. Suppose π has an inner vertex v that is not reflex. Let e1, e2 ∈ E(π) be the edges of
π and f1, f2 ∈ E(P ) the edges of P incident on v. There exists ε > 0 such that the ε-ball
B = B(v, ε) around v intersects only v, e1, e2, f1, and f . Let w1 and w2 be the intersections
of ∂B with e1 and e2. Since v is not reflex, the segment w1w2 lies in P . As in the proof of
Lemma 1.1, by shortcutting at w1w2 we can obtain a path from s to t that is strictly shorter
than π, a contradiction, see Fig. 2(c).

Next, we show that shortest paths with the same origin do not intersect properly; see Fig. 3.

Lemma 1.3. Let s, t1, t2 ∈ P . Let π1 be a shortest path in P from s to t1, and let π2 be a
shortest path in P from s to t2. Suppose that all inner vertices of π1 and π2 lie in V (P ),
and that no edge of π1 and π2 contains a vertex of V (P ). Then π1 and π2 do not intersect
properly, i.e., for any two edges e1 of π1 and e2 of π2, we have either (i) e1 = e2; or (ii) the
edges e1 and e2 are disjoint or share at most one endpoint.

Proof. Suppose that the edges e1 ∈ E(π1) and e2 ∈ E(π2) intersect properly. Let x be the
intersection point. Then x cannot be a vertex of P , or else e1 or e2 would contain a vertex
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Fig. 4: (a) A triangulation of P and the triangles connecting s and t. The sleeve is shown in
light gray; (b) the sleeve of s and t, with the corresponding sequence of triangles.

of P . Thus, x must lie in the interior of P . The paths s
π1−→ x and s

π2−→ x must have the
same length; otherwise we could shorten one of π1 or π2. Thus, we can obtain a path from
s to t1 of the same length by taking s

π2−→ x
π1−→ t1. However this path has x as an inner

vertex at which the adjacent edges are not collinear. Thus, as in the proof of Lemma 1.1,
we can obtain a strictly shorter path from s to t1, a contradiction.

Using our results so far, we can prove that shortest paths in polygons are unique.

Lemma 1.4. The shortest path from s to t in P is unique, up to subdivision of edges.

Proof. Exercise.

2 Computing Shortest Paths

We now describe how to compute the shortest path from s to t in P . Let T be a triangulation
of P , and let Ds be the triangle that contains s and Dt the triangle that contains t. We may
assume that Ds 6= Dt, since otherwise the shortest path is the line segment st.

The dual graph T ∗ of T is a tree (exercise). Therefore, T ∗ contains a unique path Ds =
D1, D2, . . . , Dk = Dt from Ds to Dt. For i = 1, . . . , k − 1, let di be diagonal that is common
to Di and Di+1. Furthermore, let D′1 = CH(s, d1) and D′k = CH(t, dk−1). The sleeve S of s

and t in P is the polygon D′1 ∪D′k ∪
⋃k−1
i=2 Di; see Fig. 4. The shortest path from s to t lies

completely in S, and it crosses each diagonal di exactly once. Hence, all vertices of π are
vertices of S.

The boundary of S can be partitioned into two polygonal chains from s to t: the left chain
(clockwise) and the right chain (counterclockwise). For each diagonal di, we denote the
vertex of di on the left chain by li, and the vertex on the right chain by ri. Now, the
algorithm for computing the shortest path from s to t proceeds iteratively: we successively

3



s
v

di

li

ri

v

(a) (b)

li

ri

b1
b2

a1
a2

a3

w = v

w = b1

w = b2

w = ri

w = a1

w = a2

w = a3

w = li

Fig. 5: (a) A funnel: v is the apex; all vertices between v and li lie on the left chain, all
vertices between v and ri lie on the right chain; (b) The position of ri+1 uniquely
determines the next-to-last vertex w on ρi+1.

find the shortest paths λ1, λ2, . . . , λk−1 from s to l1, l2, . . . , lk−1 and ρ1, ρ2, . . . , ρk−1 from s to
r1, r2, . . . , rk−1. The shortest paths λ1 and ρ1 are trivial to compute, and we will see that
there is a simple method to go from λi and ρi to λi+1 and ρi+1. By Lemmas 1.3 and 1.4, the
paths λi and ρi share the same vertices until some vertex v, after which they diverge into
two noncrossing branches.

Lemma 2.1. Let i ∈ {1, . . . , k−1}, and consider λi and ρi. Let v be the last common vertex

of λi and ρi. Then, (i) all inner vertices of v
λi−→ li are on the left chain, and all inner

vertices of v
ρi−→ ri are on the right chain; (ii) v

λi−→ li and v
ρi−→ ri are concave inside the

sleeve; and (iii) s
λi−→ v = s

ρi−→ v.

Proof. Exercise.

We say that λi and ρi form a funnel. The path s
λi−→ v is called the tail of the funnel: the

vertex v is the apex of the funnel; see Fig. 5(a). The shortest path algorithm iteratively
computes the i-th funnel Fi, for i = 1, . . . , k− 1. How does the funnel change as we proceed
from i to i + 1? The diagonals di and di+1 have one endpoint in common, so suppose that
li+1 = li and λi+1 = λi (the other case is symmetric). We only need to find ρi+1, given Fi.
Since we know the shortest paths from s to all previous vertices on the sleeve, it is enough
to identify the next-to-last vertex w of ρi+1. By Lemma 1.3, the paths λi+1, ρi, and ρi+1 do
not intersect, so w must lie on Fi, on or after the apex. Finally, the inner angle of ρi+1 at w
must be reflex. This determines w uniquely, see Fig. 5(b).

Lemma 2.2. The shortest path ρi+1 is obtained by taking the last vertex w on ρi or λi that
makes a reflex inner angle with ri and by extending the shortest path from s over w to dri+1.
The vertex w is either the apex of Fi, or it comes after the apex.
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3 Algorithm

We can now state the shortest path algorithm. First, we find the sleeve S for P , s, and t, and
we determine the diagonals d1, . . . , dk−1. The shortest paths λi and ρi are represented as two
doubly linked lists that store bidirectional pointers to the vertices on the paths. Furthermore,
we maintain a pointer v to the apex of the current funnel. We initialize λ1 as s→ l1 and ρ1
as s→ r1. The initial apex v is s.

In the main loop, we iterate for i = 1, . . . , k − 2. We take z to be the endpoint of di+1 that
is not an endpoint di. If z = ri+1, we walk backwards along ρi until we encounter either v
or the first vertex w that is reflex with respect to z. If w and z make a reflex vertex, we set
ρi+1 to s

ρi−→ w → z by changing the pointers at w. Otherwise, we walk forward along λi up

to the first vertex w that can see z; see Fig. 5(b). We then set ρi+1 to s
λi−→ w → z, and we

move the apex v to w; see Fig. 6. If z is li+1, we proceed symmetrically.

Once λk−1 and ρk−1 are known, we perform one more update step to find the shortest path
from s to t.
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Fig. 6: Advancing the funnel: (a) w lies on the right chain; (b) w is the apex; or (c) w lies
on the left chain and the apex moves forward.

4 Analysis

Correctness of the algorithm follows from Lemma 2.2. It remains to bound the running time.
Using the polygon triangulation algorithm from class, we need O(n log n) time to find the
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sleeve. If a triangulation of P is known, or if we use a more advanced triangulation algorithm,
the time reduces to O(n). Furthermore, it takes O(1) steps to initialize the funnel.

Finally, we claim that the total time to update the funnel is O(n): in each iteration, the
running time is proportional to the number of vertices we traverse on λi and ρi. Every
vertex we traverse, except the last one, is either deleted or moved behind the apex. Once
this happens, this vertex is never traversed again. Thus, the amortized time per iteration is
constant, and the total time is linear.

Theorem 4.1. Given a simple polygon P with n vertices, and two points s and t in P , we
can find the shortest path from s to t in P in total time O(n).

6


